Einführung in die Computer-Algebra

Teil 1 : Erste Schritte mit Mathematica

Informatik I – Mathematik mit dem Computer Prof. Dr. Alfred Schreiber Institut für Mathematik und ihre Didaktik · Universität Flensburg

Literatur, etc.

Stephen Wolfram:

Das Mathematica Buch. Die offizielle Dokumentation.

Addison-Wesley 1997 (und weitere Versionen)

Marie-Luise Herrmann:

Mathematica. Eine beispielorientierte Einführung.

Addison-Wesley 1997

Roman. E. Maeder:

Computer Science with Mathematica.

Cambridge University Press 2000

Weitere Quellen:

- Website und Links zu dieser Vorlesung
- Computer im Mathematikunterricht (aus: Grundzüge der Mathematikdidaktik)
- Homepage von Wolfram Research, Inc. (www.wolfram.com)
- MathReader (erlaubt das Lesen von Notebooks)

Menüs, Paletten, Notebooks, Einstellungen

File

Save

Save As ...

Save As Special ...

Palettes > Auswahl diverser Paletten

Notebooks

Hierarchischer Aufbau (Zellen)

Typen von Zellen: Text, Input, Output, etc.

Einstellungen (Preferences ... im Menü Edit)

Notebook Options > Display Options > Window Toolbars

Cell Options > Display Options > ShowGroupOpenCloseIcon (True!)

Cell Options > New Cell Defaults > DefaultNewCellStyle (z.B. "Text" oder "Input")

Elementares numerisches Rechnen

■ Termeingabe in einer Input-Zelle

Bestätigen durch SHIFT + ENTER oder ENTER (Ziffernblock)

Rückgriff auf das letzte Ergebnis %

Runde Klammern dienen der Gliederung (Rangfolge)

■ Große Zahlen

■ Numerische Näherungswerte

■ Argumentklammern sind eckig [...]

Zwei wichtige mathematische Konstanten

Die Kreiszahl π

Die Eulersche Zahl e

E N[E, 30]	
e	
2.71828182845904523536028747135	

Quadratwurzel

Anfangsbuchstaben der Namen eingebauter Funktionen sind groß zu schreiben!

Bestimmte Funktionen lassen sich in nachgestellter Schreibweise (hinter // ausführen)

■ Fakultät-Funktion

Beispiel für die Übernahme einer verbreiteten historischen Schreibweise

Binomialzahlen

Beispiel einer eingebauten Funktion von zwei Argumenten

Gebrauch von Symbolen (Variablen)

■ "Buchstabenrechnung"

Symbole können undefiniert in Ausdrücken erscheinen

Auskunft über den sog. Kontext einholen

■ Wertzuweisung

Nun ist das Symbol a definiert

?a			
Global`a			
a = 13			

Freie Namenswahl

(keine Unterstriche verwenden! Am besten nur Buchstaben A, a, B, b, ... und Ziffern 0, 1, 2, ...)

■ Gebrauch des Zeichens "="

"=" kann ähnlich wie in der Mathematik verwendet werden ...

Aber: WARNUNG – Eine Wertzuweisung ist keine Gleichung.

Die folgende Zeichenkette ist Unsinn!

■ Namen sollen "sprechen"

Ein Semikolon trennt zwei Befehle voneinander

Inhalt von Symbolen löschen

? b			
Global`b			
b = 13			

Clear löscht den Inhalt von einer oder mehreren Variablen

Clear[b, c]

Die Symbole sind aber noch bekannt (d.h. hier: im Kontext Global)

? b ? c			
Global`b			
Global`c			

Statt Clear[a] ist auch folgende Wertzuweisung möglich

Bezug zu Symbolen entfernen

Remove[b]

Zu b gibt es keinen Bezug mehr

?b
?c
Information::notfound : Symbol b not found.
Global`c

■ Ersetzungsregeln

Auf Ausdrücke Transformationsregeln anwenden:Ausdruck /. ls -> rs

Ein gewöhnlicher Ausdruck:

x durch a ersetzen:

a durch a-z ersetzen:

Relationale und logische Operatoren

■ Kleiner(gleich), Größer(gleich)

32 < 1 + 6			
•			
False			
45 > 3			
True			
40 ≤ 41			
•			
True			

■ Gleich, Ungleich

Negation von Gleich: !=

■ Und, Oder

Und-Verknüpfung

(Pi > E) && (Sqrt[6] > 2.5) False

Oder-Verknüpfung (einschließend)

(Pi > E) (Sqrt[6] > 2.5)	
True	

■ Wenn ... dann ... sonst

Listen

■ Was ist eine Liste? - Schreibweise

Listen (geordnete Sammlung beliebiger Elemente)

{5, x, -Pi, 5, "Hallo"}
{5, x, -π, 5, Hallo}

Eine Liste ist keine Menge

```
{5, x, -Pi, 5, "Hallo"} == {5, x, -Pi, "Hallo"}
False
```

Auf die Reihenfolge komm es an

```
{5, x, -Pi, 5, "Hallo"} == {5, 5, x, "Hallo", -Pi}
False
```

Warum kann Mathematica den nachstehenden Test auf Gleichheit nicht entscheiden?

```
{5, x, -Pi, 5, "Hallo"} == {5, 5, -Pi, x, "Hallo"}
{5, x, -π, 5, Hallo} == {5, 5, -π, x, Hallo}
```

■ Erzeugung

Eine Liste der ersten 10 Quadratzahlen

Table[k^2, {k, 1, 10}]
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

■ Wertzuweisungen

Es ist vorteilhaft, Listen einen Namen zu geben

```
qzliste = Table[k^2, {k, 1, 10}];
```

Elementweise Mehrfach-Wertzuweisung

■ Listen als Elemente von Listen

Listen können selbst wieder Element einer Liste sein usf.

<u>Beispiel:</u> Liste aller Wertepaare (x, x^2)

```
qzWerteTab = Table[{x, x^2}, {x, 5, 9}]
{{5, 25}, {6, 36}, {7, 49}, {8, 64}, {9, 81}}
```

■ Darstellungsformen

Liste in Form einer Matrix darstellen

M	atri	ixFo	orm[qzWerteTab]
	(5	25	
	6	36	
	7	49	
	8	64	
	9	81	J

Liste in Form einer Tabelle darstellen (MatrixForm und TableForm lassen sich mittels // anhängen)

	qzWerte	eTab // TableForm		
1				
	5	25		
	6	36		
	7	49		
	8	64		
	9	81		

Sog. Optionen sorgen für eine Beschriftung

Table	eForm[qz]	WerteTab, 1	ableHead	ings→ {1	None, {"x"	, "x ² "}}]		
x 5	x ² 25							
6	36							
7	49							
8	64							
9	81							

■ Länge einer Liste

Length[qzWerteTab]	
5	

Zugriff auf Elemente

Aus der zuvor erzeugten Liste ...

```
qzliste
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
```

wird das Element Nr. 7 herausgeholt:

Alternative Schreibweise (mit eckigen Doppelklammern)

Die Funktion Part[] bietet mehr Möglichkeiten:

<pre>Part[qzliste, {7, 9}]</pre>		
{49, 81}		

Symbolisches Rechnen

Ausmultiplizieren

Reduzieren

```
\begin{aligned} & [-27 - 54 \, u - 27 \, u^2 + 54 \, x + 162 \, u \, x + 108 \, u^2 \, x + 45 \, x^2 - 72 \, u \, x^2 - 144 \, u^2 \, x^2 - 116 \, x^3 - 160 \, u \, x^3 + 64 \, u^2 \, x^3 - 16 \, x^4 + 128 \, u \, x^4 + 64 \, x^5 + 162 \, y^4 + 324 \, u \, y^4 + 162 \, u^2 \, y^4 - 108 \, x \, y^4 - 540 \, u \, x \, y^4 - 432 \, u^2 \, x \, y^4 - 414 \, x^2 \, y^4 - 288 \, u \, x^2 \, y^4 + 288 \, u^2 \, x^2 \, y^4 + 144 \, x^3 \, y^4 + 576 \, u \, x^3 \, y^4 + 288 \, x^4 \, y^4 - 324 \, y^8 - 648 \, u \, y^8 - 324 \, u^2 \, y^8 - 216 \, x \, y^8 + 216 \, u \, x \, y^8 + 432 \, u^2 \, x \, y^8 + 540 \, x^2 \, y^8 + 864 \, u \, x^2 \, y^8 + 432 \, x^3 \, y^8 + 216 \, y^{12} + 432 \, u \, y^{12} + 216 \, u^2 \, y^{12} + 432 \, u \, x^{12} + 216 \, x^2 \, y^{12} \end{aligned}
```

Alle Variableninhalte löschen (um im Folgenden keine Überraschungen zu erleben)

Clear["Global`*"]

■ Vereinfachen (allgemein)

```
Simplify[(a - b) ^2 - (a + b) ^2]
-4 a b
```

Summen berechnen

Sum[k^2, {k, 1, n}]

$$\frac{1}{6}$$
 n (1 + n) (1 + 2 n)

Gleichungen lösen

Lösung wird als Menge von Ersetzungsregeln ausgegeben

lsg = Solve[x² + a x == 7, x]
$$\left\{ \left\{ x \to \frac{1}{2} \left(-a - \sqrt{28 + a^2} \right) \right\}, \left\{ x \to \frac{1}{2} \left(-a + \sqrt{28 + a^2} \right) \right\} \right\}$$

Übergang zur Lösungsmenge ...

x /. lsg
$$\left\{\frac{1}{2}\left(-a - \sqrt{28 + a^2}\right), \frac{1}{2}\left(-a + \sqrt{28 + a^2}\right)\right\}$$

... oder direkt auf eine einzelne Lösung zugreifen:

x /. lsg[[1]]

$$\frac{1}{2} \left(-a - \sqrt{28 + a^2}\right)$$

Beispiel eines linearen Gleichungssystems

Solve[{ax+by = c, dx + ey = f}, {x, y}]

$$\left\{ \left\{ x \rightarrow -\frac{-c e + b f}{-b d + a e}, y \rightarrow -\frac{-c d + a f}{b d - a e} \right\} \right\}$$

An der Grenze algebraischer Lösbarkeit:

$$\frac{1}{2}\sqrt{-4\left(\frac{2}{3\left(81+\sqrt{7329}\right)}\right)^{1/3}+\frac{\left(\frac{1}{2}\left(81+\sqrt{7329}\right)\right)^{1/3}}{3^{2/3}}-\frac{1}{2}\sqrt{\left(4\left(\frac{2}{3\left(81+\sqrt{7329}\right)}\right)^{1/3}-\frac{\left(\frac{1}{2}\left(81+\sqrt{7329}\right)\right)^{1/3}}{3^{2/3}}-\frac{6}{\sqrt{-4\left(\frac{2}{3\left(81+\sqrt{7329}\right)}\right)^{1/3}+\frac{\left(\frac{1}{2}\left(81+\sqrt{7329}\right)\right)^{1/3}}{3^{2/3}}}\right)}$$

Funktionen

Eigene Funktionen definieren

Argument x als Muster x_ (nur auf der linken Seite)

Definitionsoperator :=

 $f[x_] := (x/2) (x^3 - 5x^2 + 1)$

Weitere Handhabung wie in der Mathematik üblich:

$$f[a + 3] // Expand$$

$$-\frac{51}{2} - 13 a + \frac{9 a^2}{2} + \frac{7 a^3}{2} + \frac{a^4}{2}$$

■ Definitionen anzeigen lassen

Funktionen mit mehreren Argumenten

```
Früher definierte Funktionen dürfen (natürlich) benutzt werden
```

$$g[u_{, v_{]} := u * f[v] + v^{2} / u$$

$$g[a, b]$$

$$\frac{b^{2}}{a} + \frac{1}{2} a b (1 - 5 b^{2} + b^{3})$$

Nicht-Benötigtes löschen

Clear[g]

Unbedingt zu empfehlen!

Eventuell nur die Definition löschen ...

... oder nicht mehr benötigte Funktionssymbole vollständig entfernen:

Zeichnen ebener Schaubilder

Einfacher Funktionsgraph

Der Plot-Befehl in der Grundform:

Mit Optionen lässt sich ein Schaubild verfeinern, z.B. Achsenbeschriftung und Strichdicke:

■ Funktionsscharen

Die Schar der Exponentialfunktionen

Optionen des Plot-Befehls

So informiert man sich über die (voreingestellten) Optionen eines Befehls:

Options[Plot]

 $\begin{array}{l} \mbox{AspectRatio} \rightarrow \frac{1}{\mbox{GoldenRatio}}, \mbox{ Axes} \rightarrow \mbox{Automatic, AxesLabel} \rightarrow \mbox{None,} \\ \mbox{AxesOrigin} \rightarrow \mbox{Automatic, AxesStyle} \rightarrow \mbox{Automatic, Background} \rightarrow \mbox{Automatic,} \\ \mbox{ColorOutput} \rightarrow \mbox{Automatic, Compiled} \rightarrow \mbox{True, DefaultColor} \rightarrow \mbox{Automatic,} \\ \mbox{Epilog} \rightarrow \{\}, \mbox{Frame} \rightarrow \mbox{False, FrameLabel} \rightarrow \mbox{None, FrameStyle} \rightarrow \mbox{Automatic,} \\ \mbox{FrameTicks} \rightarrow \mbox{Automatic, GridLines} \rightarrow \mbox{None, ImageSize} \rightarrow \mbox{Automatic,} \\ \mbox{MaxBend} \rightarrow \mbox{10., PlotDivision} \rightarrow \mbox{30., PlotLabel} \rightarrow \mbox{None, PlotPoints} \rightarrow \mbox{25,} \\ \mbox{PlotRange} \rightarrow \mbox{Automatic, PlotRegion} \rightarrow \mbox{Automatic, PlotStyle} \rightarrow \mbox{Automatic,} \\ \mbox{Prolog} \rightarrow \{\}, \mbox{RotateLabel} \rightarrow \mbox{True, Ticks} \rightarrow \mbox{Automatic,} \\ \mbox{DefaultFont} : \Rightarrow \mbox{$SpefaultFont, DisplayFunction} : \Rightarrow \mbox{$SpisplayFunction,} \\ \mbox{FormatType} : \Rightarrow \mbox{$FormatType, TextStyle} : \Rightarrow \mbox{$TextStyle} \} \end{array}$

Die Bedeutung der Optionen erhält man über die Hilfe.

(Im Output die Schreibmarke auf das Optionswort setzen und anschließend F1-Taste drücken).

Datenlisten zeichnen

Beispiel-Daten:

■ Kurven in Parameterdarstellung

Eine Ellipse (deren Schaubild ist nicht der Graph einer Funktion):

3D-Grafik

■ Dreidimensionales Linien-Zeichnen

Eine Schraubenlinie in Parameterdarstellung

$ParametricPlot3D[\{Cos[t], Sin[t], t/3\}, \{t, 0, 15\}];$

■ Flächen im Raum

Eine Fläche benötigt im Raum 2 Parameter.

Der folgende Torus wird dadurch erzeugt, dass mit der Variation von *u* ein Kreis entsteht und dieser zusätzlich mit der Variation von *t* auf einer Kreisbahn um die z-Achse rotiert:

■ Polyeder

Zunächst ist ein sog. Mathematica-Paket zu laden:

<< Graphics `Polyhedra`

Darstellung eines Dodekaeders:

Wir entfernen die obenliegende Seitenfläche:

Animation

■ *Mathematica*-Package für Animation

Folgender Befehl lädt das Animationspaket:

<< Graphics `Animation`

Ebene Grundform

Animate[] übernimmt einen Plot-Befehl, der eine Schar von Objekten erzeugt. Die Anweisungsliste für den Scharparameter wird hinzugefügt:

Animate[Plot[Sin[n x], {x, 0, 2 Pi}, Axes -> False], {n, 1, 6, 0.5}];

■ Animation einer räumlichen Figur

Zunächst wird ein Objekt g erzeugt:

Nun wird g mittels **SpinShow** animiert (10 Phasen). Aufgrund der Symmetrie ist nur eine Halbdrehung erforderlich:

SpinShow[g,Frames -> 10, SpinRange -> {0 Degree, 180 Degree}];

Einführung in die Computer-Algebra

Teil 2 : Fortgeschrittenere Möglichkeiten mit Mathematica

Informatik I – Mathematik mit dem Computer Prof. Dr. Alfred Schreiber Institut für Mathematik und ihre Didaktik · Universität Flensburg

Numerisches Lösen von Gleichungen

Remove["Global`*"]

■ Vorbereitung

Linke Seite einer Gleichung zweckmäßgerweise als Funktion definieren:

 $g[x_1] := x^3 - 2x + 1$

Gleichung durch Symbol (glg) wiedergeben:

$$glg = g[x] = 0$$

1 - 2 x + x³ == 0

Reeller Funktionsgraph

Grafik markieren (Mausklick) und anschließend mittels [Strg]-Taste + Mauscursor die Lage der Nullstellen angenähert messen.

In diesem Fall lassen sich die 3 reellen Nullstellen von g(x) auch algebraisch berechnen:

x /. Solve[glg, x]
$$\left\{1, \frac{1}{2}(-1-\sqrt{5}), \frac{1}{2}(-1+\sqrt{5})\right\}$$

■ Numerische Lösungen

Erste Möglichkeit (nur für Polynome!):

Die zweite (allgemeinere) Möglichkeit verlangt Angabe eines Startwerts (für das eingebaute Newtonsche Verfahren):

■ Beispiel: Eine transzendente Gleichung

$$f[x_] := Cos[x^2] - \frac{x}{3};$$

Schaubild zur Lokalisierung reeller Nullstellen:

Die Startwerte können nun so gewählt werden, dass Mathematica die im Schaubild gesichteten reellen Lösungen findet:

FindRoot[glg, {x, 1}] $\{x \rightarrow 1.09427\}$

FindRoot[glg, {x, 2}] $[x \rightarrow 2.3715]$

Durch den Startwert 3 wird keine neue Nullstelle gefunden:

```
FindRoot[glg, {x, 3}]
\{x \rightarrow 2.3715\}
```

Man braucht einen Startwert zwischen den Nullstellen:

```
FindRoot[glg, {x, 2.4, 3}] \{x \rightarrow 2.60774\}
```

Operationen mit Listen

Remove["Global`*"]

■ Erweiterte Zugriffsverfahren

Eine Beispiel-Liste

(inhaltlich sinnlos, aber zweckmäßig für die folgende Demonstration):

mliste = {0, -1, "dummy", Sqrt[5], Pi, 2/3, -1, {1, 2, 3}, {}}
{0, -1, dummy,
$$\sqrt{5}$$
, π , $\frac{2}{3}$, -1, {1, 2, 3}, {}}

Die ersten 3 Elemente:

Die letzten 3 Elemente:

Erstes und letztes Element:

First[mliste] Last[mliste]
0
{}

Elemente nach "Eigenschaften" auswählen (reine Funktionen mit Wahrheitswert; siehe weiter unten).

 $\sqrt{5}$ und π sind (ohne numerische Auswertung) Symbole und werden nicht als Zahlen erkannt:

```
Select[mliste, NumberQ]
{0, -1, 2/3, -1}
Select[mliste, IntegerQ]
{0, -1, -1}
Select[mliste, ListQ]
{(1, 2, 3}, {})
```

Zugehörigkeit und Position

Ist -1 Element der Liste mliste?

MemberQ[mliste, -1]		
True		

An welcher Position kommt das Element –1 vor?

Mathematica gibt eine Liste aus, die die Positionen in Listenform enthält:

Position[mliste, -1]
{{2}, {7}}

■ Anhängen eines Elements

Element a anhängen:

AppendTo[mliste, a] $\left\{0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\right\}$

mliste enthält das neue Element a:

mliste $\{0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\}$

Der folgende Befehl lässt mliste unverändert:

mliste2 = Append[mliste, 704]
$$\left\{0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a, 704\right\}$$

$$\left\{0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\right\}$$

Element am Listenanfang einfügen

mliste

PrependTo[mliste, 13]
$$\{13, 0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\}$$

Alternativ (ohne Änderungen von mlist):

Prepend[mliste, b]
{b, 13, 0, -1, dummy,
$$\sqrt{5}$$
, π , $\frac{2}{3}$, -1, {1, 2, 3}, {}, a}
mliste
{13, 0, -1, dummy, $\sqrt{5}$, π , $\frac{2}{3}$, -1, {1, 2, 3}, {}, a}

Einfügen und Löschen

Element 1000 an Position 7 einfügen:

Insert[mliste, 1000, 7]
{13, 0, -1, dummy,
$$\sqrt{5}$$
, π , 1000, $\frac{2}{3}$, -1, {1, 2, 3}, {}, a}

Das eingefügte Element befindet sich <u>nur</u> in der von Insert **ausgegebenen** Liste, aber <u>nicht</u> in der als Parameter übergebenen Liste mliste:

mliste

$$\left\{13, 0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\right\}$$

Das Element an Position 5 von mliste löschen (und das Ergebnis dieser Operation in neueliste speichern):

```
neueliste = Delete[mliste, 5]
{13, 0, -1, dummy, π, 2/3, -1, {1, 2, 3}, {}, a}
```

Zum Vergleich die alte und die neue Liste:

```
mliste
neueliste
\{13, 0, -1, \text{dummy}, \sqrt{5}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\}
\{13, 0, -1, \text{dummy}, \pi, \frac{2}{3}, -1, \{1, 2, 3\}, \{\}, a\}
```

■ Listen als Mengen

Tabula rasa ...

Remove["Global`*"]

Eine Liste mit mehrfachen Element-Vorkommen:

aliste = {5, 2, 4, 6, 5, 2, 3, 4, 4, 1};

Die Menge der Elemente von aliste:

```
amenge = Union[aliste]
{1, 2, 3, 4, 5, 6}
```

Einebnen einer Liste

Eine Liste, der Elemente z.T. Listen sind, usw.

mliste = {1, {1, 4}, {3, {1, 2}}};

Einebnen heißt: Die Objekte auf der untersten Ebene sammeln

Flatten[mliste]
{1, 1, 4, 3, 1, 2}

■ Vereinigung

```
amenge
{1, 2, 3, 4, 5, 6}
bmenge = Table[k, {k, 4, 10}]
{4, 5, 6, 7, 8, 9, 10}
```

Vereinigung als Liste!

cmenge = Join[amenge, bmenge]
{1, 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 9, 10}

Durchschnitt

■ Komplement

Complement[bmenge, amenge]
{7, 8, 9, 10}

Kartesisches Produkt

Zwei Ausgangslisten:

aliste = {a, b, c}; bliste = {1, 2, 3, 4, 5}; akreuzb = Outer[List, aliste, bliste] {{{a, 1}, {a, 2}, {a, 3}, {a, 4}, {a, 5}, {{b, 1}, {b, 2}, {b, 3}, {b, 4}, {b, 5}, {{c, 1}, {c, 2}, {c, 3}, {c, 4}, {c, 5}}}

Achtung: Es handelt sich nicht um die Menge aller Paare!

Length[akreuzb]

Erst die folgende Operation (Einebnen in der 1. Stufe) liefert das übliche kartesische Mengenprodukt:

```
Flatten[akreuzb, 1]
{{a, 1}, {a, 2}, {a, 3}, {a, 4}, {a, 5}, {b, 1}, {b, 2},
{b, 3}, {b, 4}, {b, 5}, {c, 1}, {c, 2}, {c, 3}, {c, 4}, {c, 5}}
```

```
Schleifen
```

Remove["Global`*"]

■ Do-Schleife

Wiederholung einer Operation mittels Do (nach dem Vorbild von Table, Sum etc.):

Do[a[i] = i^2, {i, 1, 10, 2}]

Das Ergebnis sichbar machen (der Befehl Array[a,n] erzeugt eine Liste von *n* Elementen der Form a[i]):

Array[a, 10]
{1, a[2], 9, a[4], 25, a[6], 49, a[8], 81, a[10]}

■ For-Schleife

Ein (aus der herkömmlichen Programmierung bekannter) Schleifentyp, bei dem die Anzahl der Schleifendurchläufe (wie bei der Do-Schleife) vorgegeben ist.

Bem .: Die For-Schleife ist entbehrlich.

For[i = 1, i ≤ 5, i++, Print[a[i]]]
1
a[2]
9
a[4]
25

■ While-Schleife

While[bedingung, aktion] bedeutet:

Solange bedingung wahr ist, führe aktion aus.

<pre>i = 1; While[Mod[i, 5] ≠ 0, (i = i + 3; Print[i])];</pre>
4
7
10

<u>N.B.</u>: Wenn bei Eintritt in die Schleife die Bedingung nicht wahr ist, wird die Schleife nicht durchlaufen (sog. <u>abweisende</u> Schleife).

Man setze etwa im obigen Beispiel i = 5.

Definition von Funktionen

Remove["Global`*"]

■ Reine Funktionen

Eine Funktion wie $f(x) = 5x^2 - x + 1$ lässt sich wie folgt definieren:

f[x_] := 5 x^2 - x + 1

Eine alternative und häufig benutzte Definitionsform ist die einer sog. reinen Funktion.

<u>Idee dazu:</u> f = die Funktion, welche x den Wert $5x^2 - x + 1$ zuordnet

g = Function[x, $5x^{2} - x + 1$] Function[x, $5x^{2} - x + 1$]

g kann in der üblichen Weise benutzt werden:

(# ist der Platzhalter für das Argument, & markiert das Ende der Definition):

```
Abs[.] ist der Absolutbetrag.
```


■ Kompilierte Funktionen

Kompilation bedeutet: Übersetzung in maschinennahen Code. Sie dient der Beschleunigung von Berechnungen.

Kompilierte Funktionen werden wie reine Funktionen definiert (mittels Compile statt Function):

fc = Compile[x, x^3Cos[x]];
f = Function[x, x^3Cos[x]];

Vergleich der Rechenzeit:

Unterschiede zeigen sich erst, wenn zahlreiche Operationen wiederholt ausgeführt werden sollen:

Beispiel einer unkompilierten Funktion:

g[m_] := Sum[Sum[Mod[i, k], {i, 1, m}], {k, 1, m}]

g[1000] // Timing
{15.82 Second, 225771449}

Das zugehörige Kompilat erweist sich als deutlich schneller:

Bedingte Definitionen

Fallunterscheidung mittels **If**[_,_,]

(geeignet nur für 2 Fälle):

Fallunterscheidung mittels Which

(Vorteil: mehr als 2 Fälle möglich):

```
vorz[x_] := Which[
    x < 0, -1,
    x == 0, 0,
    x > 0, 1];
```


Eine flexible und bequeme Form der bedingten Definition durch den Operator / ;

```
Clear[f];
f[n_] := 0 /; n < 0;
f[n_] := 1 /; Not[IntegerQ[n]];
f[n_] := 2 /; EvenQ[n];
f[n_] := Sqrt[n]
{f[-3], f[Sqrt[5]], f[14], f[7]}
{0, 1, 2, \sqrtsymbol{7}}
```

Rekursive Definitionen

Rekursive Definition der Fibonacci-Folge:

```
Clear[f]
f[n_] := f[n-1] + f[n-2]
f[0] = f[1] = 1;
Table[f[i], {i, 10}]
{1, 2, 3, 5, 8, 13, 21, 34, 55, 89}
f[25] // Timing
{3.63 Second, 121393}
```

Neudefinition als Funktion "mit Gedächtnis":

Clear[f] f[n_] := f[n] = f[n - 1] + f[n - 2] f[0] = f[1] = 1;

■ Module

Bei vielen Berechnungen genügt es nicht, einen Formelausdruck auszuwerten; oft sind mehrere (von Bedingungen abhängige) Rechenschritte nacheinander auszuführen.

In Mathematica lassen sich dynamische Berechnungen dieser Art durch das Module[.]-Konstrukt wiedergeben.

Beispiel: Zentralwert einer Stichprobe

$$s = \{2, 4, 4, 3, 1, 5, 4, 3, 2, 5, 6, 2, 3\};$$

Die Liste wird nach Rangordnung (hier: Größe) sortiert:

```
sord = Sort[s]
{1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6}
```

Länge ermitteln:

```
slen = Length[s]
13
```

Element "in der Mitte" (Position 7) suchen (Zentralwert oder Median):

```
Part[sord, Quotient[s1, 2] + 1]
3
```

Diese Rechenschritte sollen a) zusammengefasst und b) allgemein dargestellt werden:

```
Zentralwert[s_] := Module[{sord, slen, mpos, zwert},
  sord = Sort[s];
  slen = Length[s];
  mpos = Quotient[slen, 2];
  zwert = If[OddQ[slen], sord[[mpos + 1]], (sord[[mpos]] + sord[[mpos + 1]]) / 2];
  zwert
]
```

Die Probe auf's Exempel:

```
Zentralwert[s]
```

Eine Stichprobe von gerader Anzahl:

```
Zentralwert[{2, 1, 6, 1, 3, 3}]

5/2
```

Wichtige Bemerkung:

Innerhalb von Module erklärte Synmbole (Variable) haben nur lokale Gültigkeit (d.h. sind außerhalb des Moduls nicht bekannt).

Packages

Remove["Global`*"]

Vorgefertigte Pakete nutzen

Nicht alle Funktionen von *Mathematica* sind bereits nach dem Start des Kerns verfügbar. Sie lassen sich aber durch Laden sog. Packages nachträglich verfügbar machen.

Ein Beispiel aus dem **Standard-Paket** *Graphics*

```
Lade-Befehl (Needs["...`"] oder kürzer <<...`)
```

Needs["Graphics`Graphics`"]

Eigene Pakete entwickeln

Ein Package ist eine spezielle Datei mit der Endung .m

Sie kann automatisch erzeugt werden, wenn man die Befehle (Funktionen), die das Paket enthalten soll, in <u>Initialisierungzellen</u> schreibt.

Als Demonstrationsbeispiel diene ein Mini-Package mit Funktionen zur Mengenalgebra. Es knüpft an den Abschnitt "Operationen mit Listen" an.

Mengenoperator:

Ist das Argument keine Liste, bewirkt Menge nichts:

Vereinigungsmenge:

```
(* Init *)
Vereinigungsmenge[a_List, b_List] := Menge[Join[a, b]]
```

Vereinigungsmenge[{1, 4, 2, 5}, {3, 4, 5, 6, 1}]

$$\{1, 2, 3, 4, 5, 6\}$$

Schnittmenge:

```
(* Init *)
Schnittmenge[a_List, b_List] := Menge[Intersection[a, b]]
```

Schnittmenge[{1, 4, 2, 5}, {3, 4, 5, 6, 1}]

 $\{1, 4, 5\}$

Differenzmenge:

```
(* Init *)
Differenzmenge[a_List, b_List] := Menge[Complement[a, b]]
```

Produktmenge:

```
(* Init *)
Produktmenge[a_List, b_List] := Flatten[Outer[List, Menge[a], Menge[b]], 1]
Produktmenge[{1, 2}, {a, b, c}]
{{1, a}, {1, b}, {1, c}, {2, a}, {2, b}, {2, c}}
```

Die mit (* Init *) gekennzeichneten Zellen können nun in eine neue Notebook-Datei **Mengenalgebra.nb** kopiert und dort als Initialisierungszellen ausgezeichnet werden. Beim Abspeichern kann man entscheiden, ob das zugehörige Paket **Mengenalgebra.m** automatisch erzeugt werden soll.

■ Dokumentation, Bereitstellung

Selbstentwickelte Packages sollten dokumentiert werden. Sie werden dann durch bestimmte technische Maßnahmen bereitgestellt (vgl. dazu die *Mathematica*-Hilfe sowie die angegebene Literatur <u>R. Maeder</u> sowie <u>M.-L. Herrmann</u>).